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INTRODUCTION AND MOTIVATIONS

The study of the highly nonlinear interaction of
one-electron atoms with intense infrared laser pulses
has stimulated the development of numerous
mathematical methods and numerical algorithms to
solve the corresponding time-dependent Schrodinger

equation (TDSE).



INTRODUCTION AND MOTIVATIONS

Keldysh has introduced the adiabaticity parameter

y = w(2Ip)"*/E
where o 1s the laser field frequency, £, the field amplitude,
and Ip the 10onization potential of the atom.
For y> 1, ATI and harmonic generation occur via
multiphoton transitions while 1n the strong field
limit.

For y <1, tunnel 1onization takes place.

For Ti-Sapphire laser E~0.1, ®=0.057, Ip =0.5 for atomic hydrogen



Two main mechanisms of ionization

“+_ lonisation tunnel

lonisation multiphotonique




INTRODUCTION AND MOTIVATIONS

For y < 1, the electron can escape from the
vicinity of the ion core by tunneling through the
barrier formed by the Coulomb attraction of the
core and the time-dependent electric field
generated by the laser. Once the electron is
released, it is driven back and forth by the
external field. It can therefore experience
multiple returns to the nucleus. When the
electron gets back to the nucleus, it can be
scattered by the ion core or recombine in the
ground state of the atom leading to HOHG of the
driving field.




INTRODUCTION AND MOTIVATIONS

This picture is the basis of a well-known
theoretical model, the so-called “strong field
approximation” (SFA) where it is assumed that the
dynamics are governed by the coupling of the
ground state with the continuum and that the
ejected electron is described by a Volkov state that
ignores the presence of the Coulomb potential.




INTRODUCTION AND MOTIVATIONS

In fact, for y <<1 and a fortiori for y = 1, it is

impossible to make a clear-cut separation
between the two mechanisms. Both of them,
multiphoton processes and tunnel ionization
play a role. This has been confirmed
experimentally and by numerical simulations.
High-resolution fully differential experimental
data on single ionization of rare gases (He, Ne,
and Ar) by short laser pulses have been
obtained by Rudenko et al. Their data clearly
show that deep in the tunneling regime, the
low-energy ATI peaks exhibit a fine structure
that is unambiguously attributed to a resonant
multiphoton process.




MAIN PURPOSE OF OUR WORK : -

These results raise the fundamental question of the
actual role of the Coulomb potential in the intensity
regime where tunnel 1onization 1s supposed to take
place. In order to address this question, we have
developed a model calculation which goes far
beyond the SFA. It is this mathematical model that
we present in this contribution.



The main 1dea of the present approach is to substitute in momentum
space, the kernel of the nonlocal Coulomb potential by a sum of N
separable potentials, each of them supporting one bound state of
atomic hydrogen. This approach which is widely used in nuclear
physics for short-range potentials, allows one to reduce the 3D TDSE
to a system of N coupled 1D linear Volterra integral equations of the
second kind that we solve numerically. The model presents several
advantages:

it provides a rigorous solution for the electron wave
packet;

by contrast with the SFA, more than one bound state may
be included 1n the model;

the continuum-continuum dipole matrix elements are
treated exactly;

the theory 1s fully gauge invariant.




BRIEF SUMMARY OF THE THEORY

SE in the momentum space
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The elements of the T - matrix are the first to be calculated
analytically.

For the hydrogen atom, the matrix of the potential 1s a block-
diagonal :
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CONTINUUM SPECTRUM
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also to be calculated analytically



SOLUTION OF THE TDSE IN MOMENTUM SPACE
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We obtain a system of time-dependent linear Volterra $0o°

integral equations which can be written in matrix formas | g°
follows:
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We can introduce the new analytical element
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The main 3D integrals can be calculated analytically.
We then solve the system of 1D coupled Volterra
equations on grid, calculate the wave- packet, and then
calculate various differential probabilities.
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For the bound state < v, >== 0 :: : o

U=p+eA(t), < p. >~ —A(t) L X ]
The Ehrenfest’s theorem (classic)

d ~ -
p7 < p=>=—(VV) - E(t)

being applied for the continuum states after end of the pulse

t{eyols artique)
Probabilité d'ionisation
=] (=] =]
& [L] 2]
T T T

o
©
T

o
S
T

AN
N
(a0

/a)
/ \‘_j‘ VL

0.4

1 = 10% Wiem®

1

1 (eyele aptique)

0.9

=3
o

e o
> N
T T

t {cycle optique)
=}

Probabilité d'ionisation
=3 Q (=3
B oo =
T T T T

=]
T

3 i 1 2 3

T =2 x 10" Wlom®

4
1 (cycle optique)



t (eyele optique)
N W o

-

t (eycle optique)

2 3

Probabilité d'ionisation

Probabllié donisation
s o & 5 8 8 o
o s o -3 ~ ® o -
4 =

2
5]
T

Ia' I:
N
o \J

o

4
1 [cycle optiqua)

a 1 2

I =4 x 10" W/on®

t (cycle optique)

T =

4
1 (sycle optique)

Probabité d'ionisation
o o o
» 0@
T T T

i
i
T

Q

A L
[} 1 2

5 x 10 W/cm?

3 4
1 (Gycle optique)



(a)

wn

(b)

t (cycle optique)
s

w
t (ceycle optique)

P, (u.a.)

F1G. 3.6 — Densité de probabilité |®(p, = 0, p., t)|* en échelle logarithmique pour une inter-
action de 8 cycles optiques, une intensité de 1.3 x 10 1W/em? et une fréquence de 0.057 u.a.,
avec notre nouveau modeéle (a) et obtenue par A. de Bohan (b). Le potentiel vecteur A (t)
est superposé en bleu.



Between 2U <|p,[<10U , we observe a qualitative agreement with the
results of our calculations for the pure Coulomb potential.
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Electron energy spectrum (a.u.)
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——TDSE with 7000 sturmians / electron angular momentum (x=0.3) _
——TDSE with separable potentials
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peak

o =0.375a.u.

pulse shape: flat top with 2—optical cycle .
sine square turn-on and -off

total pulse duration: 40 optical cycles
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