
The parallel calculations of fully differential cross section
for transfer excitation reactions in fast proton-helium

collisions
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5Physics Faculty, Moscow State University, Moscow, Russia
6Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia

INTRODUCTION

From an experimental point of view, single-electron transfer has at
least two interesting facets. First, it can be used as a tool for spec-
troscopy. Energy gain spectroscopy and the related experiments in
inverse kinematics which exploit the recoil ion longitudinal momen-
tum for Q-value determination (change in the electron binding en-
ergies) give access to the energy levels of highly charged species
and to energy levels that do not decay radiatively. These are difficult
to access by other spectroscopic techniques. Second, the dynam-
ics of the transfer process itself is of fundamental interest since it
combines electron-electron dynamics, correlation, and questions of
few-body momentum exchange.
In most of the theoretical studies the transfer into an excited state
or the transfer combined with a target excitation of a second elec-
tron were neglected. Especially at higher impact energies Ep > 100
keV/u, where the final state determination in experiments are difficult,
the influence of excitation has not been investigated. Nowadays the
modern experimental technique of COLTRIMS (Cold Target Recoil
Ion momentum spectroscopy) allows to measure the final electronic
states in electron transfer reactions even at high impact energies.
We consider here the transfer reaction p+He → H+He+ at different
high proton energies and present both the experimental single dif-
ferential cross sections for total excitation of the residual helium ion
(n ≥ 2), and the calculations within first Born approximation (FBA).

EXPERIMENT

For the swift collisions investigated here, the best resolution is ob-
tained by detecting the recoil ion momentum instead of small change
on the large projectile momentum. In the present experiments we
have used the COLTRIMS technique to measure both the neutral
projectile H0 and the recoil ion He+ in coincidence [1, 2]. The experi-
ment has been performed at the 2.5 MV van de Graaff accelerator at
the Institut fur Kernphysik, University of Frankfurt. We used two sets
of adjustable slits to collimate the beam to a size of 0.5×0.5 mm2 at
the target. Two sets of electrostatic deflectors are placed in front and
behind the target. They were used to clean the beam from charge
state impurities in front of the target and to analyze the final charge
state behind the target. The neutral H0 projectiles were detected on a
40 mm position- and timesensitive multichannel plate (MCP) detector
with delay line anode for position read-out [3]. The target is provided
by a 2-stage supersonic gas jet. At the interaction point, the gas jet
has a diameter of 1.5 mm and areal density of 5×1011 atoms/cm2.
The He+ recoil ions produced in the overlap region of gas jet and
projectile beam were projected with a weak electrostatic field (4.8
V/cm) onto a 80 mm position- and time-sensitive multi channel plate
detector. A three-dimensional time- and space-focusing geometry
was applied to maximize the resolution [4]. From the measured data,
time of flight (19 µs for He+) and position of impact, we extracted the
initial three-dimensional momentum vector. We achieved an over-
all momentum resolution of 0.1 a.u. which was limited by the target
temperature. Our spectrometer geometry and electric fields yielded
4π acceptance angle for all recoil ions with momenta below 9 a.u.
In the plane perpendicular to the beam axis, we measure the scatter-
ing angle of the projectile and the transverse momentum of the recoil-
ing ion. By momentum conservation they must add to zero. We used
this for background suppression. We deduced the scattering angle
from the recoil ion transverse momentum, which has a much better
momentum resolution in our setup. By gating on the different longitu-
dinal momenta of the recoil ion, we were able to extract the scattering
angles for different final electronic states [5]. The small background
contribution, mainly from single ionization, has been subtracted.

THEORY

Let us denote the projectile proton momentum by ~pp, the hydrogen
momentum by ~pH , and the recoil-ion momentum by ~K . We also de-
fine the transferred momentum as ~q = ~pH − ~pp. We can deduce its
approximate value using the momentum and energy conservation

~q + ~K = 0, (1)
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Here ~k is the ejected electron momentum, the proton mass
mp = 1836.15, the helium ion mass M ≈ 4mp, EHe

0 =
−2.903724377034 [6].
Now we choose very small scattering angles for the outgoing hydro-
gen (0 ≤ θp . 1.5 mrad). It leads to a practically zero ion velocity
K/M in the laboratory frame during the process, and we can con-
sider the ion like immovable. The proton velocity ~vp = ~pp/mp varies
about a few a.u. for its energy of several hundredths keV. This fact al-
lows one to neglect K 2/2M and q2/2mp after insertion of ~pH = ~q+~pp
into Eq. (2). As a result we obtain

~vp~q =
1
2

v2
p + Q; Q = EHe

0 − EH − E ion, (3)

and choose the vector ~vp as z-axis; there follows the longitudinal
component qz = vp/2 + Q/vp. The transverse component of the
vector is q⊥ = (~pH)⊥ ≈ mpvpθp.
We have two types of single differential cross section (SDCS) for TE
processes:
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In theoretical calculations we use four trial ground-state helium wave
functions. One is the loosely correlated 1s2 Roothaan et al (RHF)
wave function [7] (no angular correlation) with a rather poor ground-
state energy of ERHF

He = −2.8617 a.u. Second one Silverman et al
(SPM) wave function [8] includes angular correlations, but its ground
energy is also far from the experiment ESPM

He = −2.8952 a.u. Two
another trial functions are highly correlated ones. It is given in Mitroy
et al (MMW) [9] with a ground-state energy of EMMW

He = −2.9031 a.u.
and that of Chuluunbaatar et al (CPV) [10] with ECPV

He = −2.903721
a.u. Their energies are very close to the experimental value.
We omit in short the mathematical details of description of the sym-
metrized matrix elements |T FBA

nlm |, which are given in [11, 12]. We
calculate them with use of 3D and 6D integrals.

NUMERICAL INTEGRATION DETAILS

The corresponding integrals are calculated using the adaptive sub-
division algorithm, and it has a loop that contains four steps:
i) determine a new subdivision of the integration region,
ii) apply the basic rule to any new subregions,
iii) combine new results from step ii) with previous results and
iv) check for convergence.
For p-processors parallelization of above algorithm we used the
Single list algorithm:
p-sect region [a1,b1]× [a2,b2]× · · · × [ad ,bd ]
do parallel

apply integration rule to subregions
end do parallel
do while (error > ε) and (number of rule evaluations ≤ Nmax)

SUBREGION SELECTION
do parallel

compute new subregion limits
apply cubature rule to new subregions

end do parallel
do parallel

remove old subregions from list
add new subregions to list
update integral approximation and error estimate

end do parallel
end do
Our p-processors parallel calculations are approximately 0.8p times
faster than single processor.

RESULTS AND DISCUSSION

In Fig. 1 we present experimental and theoretical SDCS1.
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Figure 1: Experimental and theoretical data for Ep = 300 keV (left-top panel),
Ep = 630 keV (right-top panel) Ep = 1000 keV (left-bottom panel), Ep = 1200 keV
(right-bottom panel) p+He collisions. Full squares is the experiment, red line the
RHF [7] trial helium wave function, blue line SPM [8], green line MMW [9] and
black line CPV [10] practically coincide. n = 2 + 3.

The shape of the SDCS1 is formed by three FBA terms, one of which
(OBK) provides the direct He→ e+He+ decay mechanism, and two
others provide the double decay of the helium in the intermediate
state He→ 2e+He2+. The absolute value of the cross sections is
about 1% of that when the residual ion stays in its ground state
(charge transfer, CT), and the shape in the case of helium wave
functions with angular correlations has the minimum and reminds
the case n = 1 [12]. The wave function without angular correlations
fails at all. It is interesting to note, that FBA SDCS1 for CT reactions
practically does not depend on the trial helium wave function, and
even the simplest 1s2 one describes well the main peak.
We also see that Ep ∼ 500 keV is the boundary energy when FBA
still describes somehow the main peak at very small θp. The FBA
also fails to describe the position of the minimum and the behavior
of the cross section beyond it. We need to attract here the SBA or
DWBA calculations.

RESULTS AND DISCUSSION

We have to work out at least computer code for 9D integration to cal-
culate the SBA or DWBA. Such the FBA calculations of the SDCS2
are presented in [13] for Ep = 300 keV, but the result was about 150
times bigger than the experiment. Our correct results on the base
of 9D calculations are presented for the first time in Fig. 2. They
quite coincide with both 3D and 6D calculations, and the experiment
(n = 2 + 3). See also our discussion in [14, 15].

Figure 2: SDCS2 calculations versus the scattering angle θp at Ep = 300 keV.
Colors of curves are the same like in Fig. 1.

Next, we calculate 9D integral with the eikonal phase-factor obtained
earlier in [12]

T DWBA
nlm ≈

√
2
∫

d3Re−i ~R~q
∫
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∫
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∗
nlm(~r2)×

e[−i/vp f (~R,~ρ,~r2)]

[
−1
ρ
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+
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R

]
Φ0(~R − ~ρ,~r2). (6)

with

f = ln

[
[vp|~R − ~ρ| + ~vp · (~R − ~ρ)]2 [vp|~R −~r2| + ~vp · (~R −~r2)]

[vpR + ~vp · ~R]2 [vp|~R − ~ρ−~r2| + ~vp · (~R − ~ρ−~r2)]

]
.

This phase-factor is a part of the SBA, and can be considered like
modified 4C approximation (in analogy to 3C and 6C). Results for
Ep = 300,630,1000 and 1200 keV are presented in Fig. 3. We see
positive evaluation of the main peak towards the experiment. How-
ever, this DWBA can not improve the situation at bigger scattering
angles, and full SBA calculations are needed.
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Figure 3: SDCS1 calculations versus the scattering angle θp. Solid line: SPM,
dashed line: SPM with the 4C phase factor. Ep = 300 keV (left-top), Ep = 630
keV (right-top) Ep = 1000 keV (left-bottom), Ep = 1200 keV (right-bottom).

CONCLUSION

In conclusion, we present the SDCS experimental data and FBA the-
ory for transfer excitation proton-helium collision at 300, 630, 1000
and 1200 keV/u. In calculations both 1s2 and highly correlated trial
helium wave functions are used. The 1s2 wave function fails to de-
scribe the experiment, while angular correlated functions give practi-
cally coincident results and well reproduce the experiment in a vicin-
ity of main peak. 300 keV/u results show the limit for the FBA theory.
Also 3D, 6D and 9D calculations give coincident results, close to the
experiment.
We modified the several standard Fortran codes for evaluate a high-
dimensional integral using the adaptive subdivision method. Now
they keep more data in the memory, can use the complex arithmetics
and are adapted for parallel calculations.
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